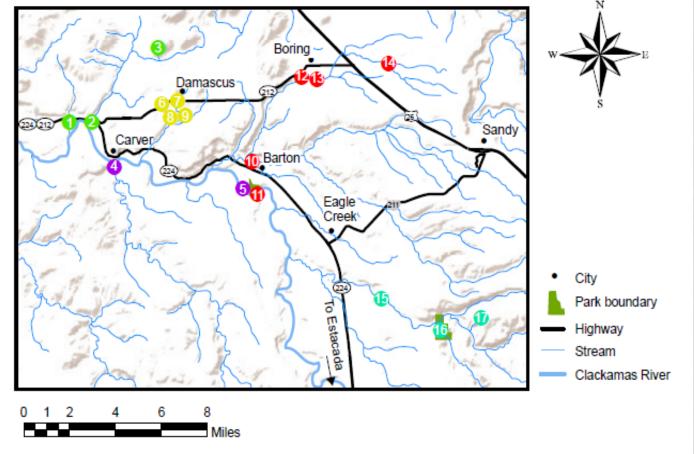

PRESENTED BY PSU STUDENT WATERSHED RESEARCH PROJECT (SWRP) SUMMER CAPSTONE AUGUST 2013


PSU SENIOR CAPSTONE STUDENTS

STUDY AREA: LOWER CLACKAMAS RIVER BASIN

Rock Creek Sub-basin

- Sieben Creek (SEB002)
- 2 Rock Creek (RCK000)
- Rock Creek (RCK002)
- Clear Creek Sub-basin
- 4 Clear Creek (CLE000)
- Clackamas River (CLA024) Richardson Creek Sub-basin
- 6 Richardson Creek (RCK003)
- Richardson Creek (RCK002)
- Bichardson Creek (RCK005)
- Bichardson Creek (RCK004)
 Deep Creek Sub-basin
- Deep Creek (DEP002)
- Goose Creek (GCK001)
- (D) North Fork Deep Creek (NFD001)
- (B) North Fork Deep Creek (NFD004)
- (A) North Fork Deep Creek (NFD002)
- Eagle Creek Sub-basin
- (E Eagle Creek (EGL001)
- (Eagle Creek (EGL005)
- () Eagle Creek (EGL002)

SUB-BASINS TESTED

reek (1 Stream, 3 Siles) • Eagle Clear Creek (2 Streams, 2 es Deep Creek reams, 5 Sites) Streams, 3 Sites) Roc Cree Richardson Creek (1 Steam, 4 Sites)

WATERQUALITY DATA

CHEMISTRY PARAMETERS AND METHODOLOGY

- Temperature (°C)
- Dissolved Oxygen (O₂ mg/L)
- Turbidity (NTU)
- pH
- Nitrogen
 - Ammonia (N-NH₃ mg/L)
 - Nitrate (N-NO₃ mg/L)
- Phosphorous (SRP mg/L)

DEQ WATER QUALITY STANDARDS

Water Quality Standards					
Parameters Surface Water Spawning Drinking Water					
ph	6.5 - 8.5		6.5 - 8.5		
Temperature (°C)	≤ 1 7 .8	≤ 12.8			
DO (mg/L)	≥ 6.0	≥ 11.0			
DO (% sat)	≥ 90%	≥ 95%			
Phosphorus (mg/L)	< 0.1				
Nitrate (mg/L)	< 10		≤ 10		

EAGLE CREEK RESULTS 3 SITES TESTED

ParametersMeetsDoes not meetpHXTemperatureXDissolved OxygenXPhosphorusXNitrateX

CLEAR CREEK RESULTS

2 SITES TESTED

<u>Parameters</u>	<u>Meets</u>	Does not meet
рН	Х	
Temperature		Х
Dissolved Oxygen	Х	
Phosphorus	Х	
Nitrate	Х	

• CLE000 (Above Temperature specifications)

DEEP CREEK RESULTS

5 SITES TESTED

<u>Parameters</u>	<u>Meets</u>	Does not meet
рН	Х	
Temperature		Х
Dissolved Oxygen	Х	
Phosphorus	Х	
Nitrate	Х	

• DEP002 and GCK001 (Above Temperature specifications)

ROCK CREEK RESULTS

3 SITES TESTED

<u>Parameters</u>	<u>Meets</u>	Does not meet
рН	Х	
Temperature	Х	
Dissolved Oxygen	Х	
Phosphorus		Х
Nitrate	Х	

• RCK000, 002 & SEB002 (Above Phosphorus specification)

RICHARDSON CREEK RESULTS

4 SITES TESTED

<u>Parameters</u>	<u>Meets</u>	Does not meet
рН		Х
Temperature		Х
Dissolved Oxygen		Х
Phosphorus	Х	
Nitrate	Х	

- •RCH005 (Below pH specifications)
- •RCH004 (Above Temperature specifications)
- RCH004 & 005 (Below DO specifications)

MACROINVERTEBRA

INTRODUCTIO

Anthropogenic lands, a dotivities rearstreams of have extensive impacts any aler quality and the biota living within the stream

peen showed a be cood indicate asternal ages baye been showed a be cood indicate a stream health os they are sensitive to charges in weter quality.

MACROINVERTEBRATE IMPACTS

Industrial tox

Herbicides

ources

Thoras: The middle segments where legs and wing pade lif attached. In most stoneflies, gills are located on Excess nutrient loading from fertilizers and other

here the eyes

Riparian disturbanc

Affects temperature, habitst, and dissolved oxygen and nutrients

OUR STUDY

 This study uses an Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies) (EPT) index calculation, as well as Oregon Watershed Enhancement Board (OWEB) Level 2 biotic water quality assessment methods as a measurement of stream health.

Mayfly larva

Stonefly larva

Caddisfly larva

METHODS

Three kick technique, 500 micron net, at 25, 50, and 75% widths.

18 colligrid, selected at random, and specie fallied as they are being identified.

ANALYSIS

• OWEB coring table where raw score is the total number of each order found for each metric in each stream sampled.

Metric	Raw Score	5	3-	1	Score (circle one)
Taxa Richness		>18	10 - 18	<10	5 3 1
Mayfly Richness	12	>4	2-4	<2	5 3 1
Stonefly Richness		>3	1-3	0	5 3 1
Caddisfly Richness		>4	2-4	<2	5.3 1
% Diptera		<15	15-30	>30	5.3.1
% Dominance	P	<30	30-50	>50	5 3 1
	110			1 May	Sum the Score

ANALYSIS (CONT'D)

• OWEB table for estimate 1.

Score Range	Stream Condition
>23	No impairment : passes Level 2 assessment. Indicates good diversity of invertebrates and stream conditions with little disturbance.
	Further sampling will help confirm the site's condition as unimpaired.
17 – 23	Moderate Impairment: Evidence of some water quality impairment exists. Requires further study and more detailed analysis.
<17	Severe Impairment : Fails levels 2 assessment. Evidence of stream disturbance exists. Further study may be warranted to confirm level of impairment and potential causes.

EAGLE CREEK MACROS

exis

Eagle Creek Macroinvertebrate Assessment

OWEB Assessment	Raw Score	Ranking
Taxa Richness (# of Families)	16	3
Mayfly Richness	3	3
Stonefly Richness	2	3
Caddisfly Richness	3	3
% Diptera	12.5	5
% Dominance	55.2	1
Sum total score		18
EPT Assessment	0.58	2

Highest richness of benthic invertebrates of the four sub basins sampled at 16.

OWEB score of 17-23 indicates moderate impairment.

ome water quality impairmer

Healthiest Watershed Obs

CLEAR CREEK MACROS

Clear Creek Macroinvertebrate Assessment			
OWEB Assessment	Raw Score	Ranking	
Taxa Richness (# of Families)	7	1	
Mayfly Richness	2	3	
Stonefly Richness	0	1	
Caddisfly Richness	1	1	
% Diptera	0	1	
% Dominance	81.8	1	
Sum total score		8	
EPT Assessment	0.64	1	

Had the lowest richness of benthic invertebrates of the four sub-basins sampled cr 7.

EPT index of 0.64, the highest of the sub-basing

Lowest score of sub-basins in the OWLB level 2 assessment with a score of just 8 which indicates, possible appairment

Evidence of stream disturbance exists but requires further study

DEEP CREEK MACROS

OWEB Assessment	Raw Score	Ranking
Taxa Richness (# of Families)	8	1
Mayfly Richness	3	3
Stonefly Richness	0	1
Caddisfly Richness	0	1
% Diptera	16.7	3
% Dominance	55.6	1
Sum total score		10
EPT Assessment	0.33	4

Second lowest richness of benthic invertebrates of the four sub-basins sampled at 8.

EPT index of 0.33, severely low as stream health indicator and lowest of the sub-basins sampled here.

Scored second lowest of the four sub-basins in the OWEB evel 2 assessment with a score of just 10, indicates possible severe impairment.

ROCK CREEK MACROS

Rock Creek Macroinvertebrate Assessment			
OWEB Assessment	Raw Score	Ranking	
Taxa Richness (# of Families)	10	3	
Mayfly Richness	4	3	
Stonefly Richness	1	3	
Caddisfly Richness	1	1	
% Diptera	18.5	3	
% Dominance	73.8	1	
Sum total score		14	
EPT Assessment	0.55	3	

Second highest richness of benthic invertebrates of the four sub-basins sampled at 10.

EPT inde of 0.55, average ine sub-pasins sampled

 Scored second of the fours basins in the OWEB level 2 assessment with a score of 1 ndicates possible severe

Demainen

DAMASCUS DAYS

- Our role in the event was to educate the community about watershed health and provide educational activities for families.
- Students conducted on sight testing for Rock, Richardson and Deep Creeks.

SPECIAL THANKS

 Mary Ann Schmidt; Instructor of PSU Senior Capstone Stream Monitoring Course

 Clackamas River Basin Counsel: Outreach Specialist Chelsea White-Brainard

Private and Public Land Owners

